System Setup

Build interior

In the photo here, you can see our completed AMD system, ready to run. For our initial Ryzen testing, we did not choose to perform comprehensive overclocking tests, but we know plenty of other review sites have pushed their Ryzen chips to their ragged edge, running 1.45 volts through them to try to exceed 4GHz. Our two cents on all of this is that's simply ridiculous. AMD itself has stated that 1.35V is the long-term limit, and from our point of view, people who spend their hard-earned money on PC gear probably want to back off the manufacturer-specified limit just a touch to ensure that their hardware actually lives a nice long life.

Frankly, we're pretty ticked off that reviewers who got free gear decided to benchmark Ryzen at 4.0GHz+ using 1.45V and publish these as legitimate performance metrics. They are not, because those press samples are going to be degraded in no time flat, but the reviewers won't give a darn because they didn't pay for their CPUs. Well, as we indicated on the first page of this review, we didn't pay for ours either, but that doesn't mean we're interested in performing suicide runs on our CPU, nor are we interested in telling our readers to do so. Our initial impressions are that most Ryzen chips should hit 3.8GHz with under 1.35V, and that is what most Ryzen owners should have in mind as a reasonable goal (ours runs at 3.75MHz with under 1.2V, which is so cool and quiet that we're not going to be running it any faster!). 

As for RAM, we took full advantage of our GeIL DDR4-3000 kit, which runs at 2933MHz on the Ryzen platform. The available frequencies when using Ryzen are 1866, 2133, 2400, 2666, 2933, and 3200, and any RAM that falls in between these speeds or above will be downclocked, as was our DDR4-3000. We had no problems at all from our very first cold boot at 2933MHz on our Gigabyte GA-AB350-Gaming 3 motherboard. As we stated earlier, you should consult the motherboard manufacturer's website to find the list of compatible memory before taking the leap into a costly set of RAM sticks, as many kits that work perfectly on the Intel platform will not work on Ryzen, even at slower speeds. Another thing to keep in mind: AMD has published guidelines that suggest that the best stability is reached using just two sticks of single-sided, single-rank RAM, and that moving to four sticks, double-sided, or double-rank RAM will limit the frequency at which RAM can run. Again, consult the motherboard manufacturer websites for help on this, because they've done the hard work of figuring out which kits will actually run at which speeds in dual- and quad-stick arrangements. Note, for example, that when we tested Corsair's stunning 4x8GB Vengeance LED DDR4-3000 kit in this system, it would run at DDR4-2933 with two sticks, but only at 2133MHz with four, despite being single-sided RAM.

By the way, for what it's worth, we were able to take our Radeon R9 Fury from its factory-overclocked 1050MHz/500MHz state all the way up to 1120MHz/575MHz using the Sapphire Trixx software suite. That allows it to perform better than even a liquid-cooled Fury X, while remaining entirely silent. In fact, the cooler on the Sapphire R9 Fury Nitro is the finest air cooler we've ever tested, and was clearly overbuilt. While Sapphire doesn't produce Nvidia-based cards, this cooler would likely do wonders if it could be strapped to a GTX 1080 Ti! We look forward to seeing what Sapphire and other AMD board partners can do with the upcoming Vega RX GPU.

Final Thoughts

Lit Up

We are really excited that there's finally renewed competition in the CPU arena. Anyone who's been following this market since the dawn of the 2000s knows that this isn't the first time AMD has put the screws to Intel. AMD's pioneering dual-core design proved that there really was value in moving past the "megahertz race" that Intel won with its absurd 3.73GHz Pentium 4 Extreme Edition released in 2004. The dual-core Athlon put that and all other Pentiums to shame, despite much lower clocks, and that's because cores really did matter. Alas, ever since Intel leapfrogged AMD in 2006 with its revolutionary Core 2 Duo, this has been a one-horse race.

Thankfully, AMD's Ryzen offers something new and different, and will no doubt push Intel to work a bit harder to offer value to the consumer. It feels a bit like it's 2004 all over again, with AMD offering potent six-core processors for the same price or less than what Intel charges for a quad-core. Yes, we're aware that the Ryzen has its weaknesses (most notably games), but we've also done enough game benchmarking over the years to know that game engines are taking ever-greater advantage of core counts. We believe that in the near future, most games will in fact perform better on Ryzen than on like-priced Core i5 processors.

We hope you've found this guide useful... perhaps it's even convinced you to make your next PC a Ryzen PC! Note that while we tested the Ryzen 7 1700 eight-core CPU, we think the best picks of the Ryzen litter are the six-core models, which offer a lot of computing power for the price, higher out-of-the-box clocks, and the same overclocking limits. As always, to see our latest system recommendations at every price, check out our Do-It-Yourself PC Buyer's Guides, updated on a monthly basis with all the latest and greatest enthusiast gear!

Previous page